Semiparametric Mixture of Binomial Regression with a Degenerate Component
نویسندگان
چکیده
Many datasets contain a large number of zeros, and cannot be modeled directly using a single distribution. Motivated by rain data from a global climate model, we study a semiparametric mixture of binomial regressions, in which both the component proportions and the success probabilities depend on the predictors nonparametrically. An EM algorithm is proposed to estimate this semiparametric mixture model by maximizing the local likelihood function. We also consider a special case in which the component proportions are constant while the component success probabilities still depend on the predictors nonparametrically. This model is estimated by a one-step backfitting procedure, and the estimates are shown to achieve the optimal convergence rates. The asymptotic properties of the estimates for both models are established. The proposed procedures are applied to rain data from a global climate model and historical rain data from Edmonton, Canada. Simulation studies show that satisfactory estimates are obtained for the proposed models for finite samples.
منابع مشابه
Marginalized mixture models for count data from multiple source populations
Mixture distributions provide flexibility in modeling data collected from populations having unexplained heterogeneity. While interpretations of regression parameters from traditional finite mixture models are specific to unobserved subpopulations or latent classes, investigators are often interested in making inferences about the marginal mean of a count variable in the overall population. Rec...
متن کاملEstimation of a semiparametric mixture of regressions model
We introduce in this paper a new mixture of regressions model which is a generalization of the semiparametric two-component mixture model studied in Bordes et al. (2006b). Namely we consider a two-component mixture of regressions model in which one component is entirely known while the proportion, the slope, the intercept and the error distribution of the other component are unknown. Our model ...
متن کاملWavelet Threshold Estimator of Semiparametric Regression Function with Correlated Errors
Wavelet analysis is one of the useful techniques in mathematics which is used much in statistics science recently. In this paper, in addition to introduce the wavelet transformation, the wavelet threshold estimation of semiparametric regression model with correlated errors with having Gaussian distribution is determined and the convergence ratio of estimator computed. To evaluate the wavelet th...
متن کاملSemiparametric estimation of a mixture of two linear regressions in which one component is known
A new estimation method for the two-component mixture model introduced in Vandekerkhove (2012) is proposed. This model, which consists of a two-component mixture of linear regressions in which one component is entirely known while the proportion, the slope, the intercept and the error distribution of the other component are unknown, seems to be of interest for the analysis of large datasets pro...
متن کاملRobust high-dimensional semiparametric regression using optimized differencing method applied to the vitamin B2 production data
Background and purpose: By evolving science, knowledge, and technology, we deal with high-dimensional data in which the number of predictors may considerably exceed the sample size. The main problems with high-dimensional data are the estimation of the coefficients and interpretation. For high-dimension problems, classical methods are not reliable because of a large number of predictor variable...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011